(19)中华人民共和国国家知识产权局

(12)发明专利

(10)授权公告号 CN 104934656 B (45)授权公告日 2019.03.08

(21)申请号 201510119112.3

(22)申请日 2015.03.18

(65)同一申请的已公布的文献号 申请公布号 CN 104934656 A

(43)申请公布日 2015.09.23

(30)优先权数据

14/217,730 2014.03.18 US

(73) **专利权人** 福特全球技术公司 **地址** 美国密歇根州迪尔伯恩市

(72)**发明人** 乔治•艾尔伯特•加芬克 帕特里克•丹尼尔•玛古尔

(74)专利代理机构 北京铭硕知识产权代理有限 公司 11286

代理人 王秀君 张川绪

(51) Int.CI.

H01M 10/617(2014.01)

H01M 10/625(2014.01)

H01M 10/647(2014.01)

H01M 10/6555(2014.01)

H01M 10/6551(2014.01)

(56)对比文件

CN 101641823 A,2010.02.03,

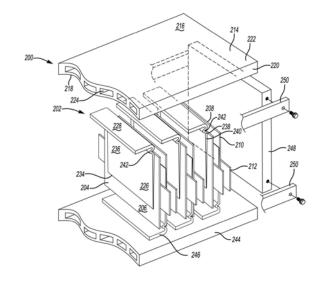
CN 103199316 A,2013.07.10,

CN 102881846 A,2013.01.16,

CN 103138029 A,2013.06.05,

CN 103107385 A,2013.05.15,

审查员 朱晓岗


权利要求书1页 说明书9页 附图6页

(54)发明名称

牵引电池热管理系统

(57)摘要

本发明涉及牵引电池热管理系统,公开了一种牵引电池组件。牵引电池组件包括:电池单元 阵列,具有堆叠的多个电池单元;一对热板,被布置为将电池单元阵列夹在所述一对热板之间。每个热板包括多个翅片。每个翅片从所述一对热板中的一个向外延伸到电池单元阵列中并与所述多个电池单元交替布置,以冷却或加热所述多个电池单元。另外,公开了一种车辆,所述车辆包括如上所述的牵引电池组件。

1.一种牵引电池组件,包括:

电池单元阵列,包括堆叠的多个电池单元;

一对热板,被布置为将电池单元阵列夹在所述一对热板之间并包括多个翅片,每个翅片是锥形的且仅从所述一对热板中的一个向外延伸到电池单元阵列中,所述多个翅片与所述多个电池单元交替布置,以冷却或加热所述多个电池单元,

其中,所述电池单元相对于所述热板的内侧部倾斜地布置以紧靠着所述翅片安放。

- 2.根据权利要求1所述的牵引电池组件,其中,所述多个翅片与所述多个电池单元交替 布置,使得在任意两个相邻的电池单元之间仅布置一个翅片。
 - 3.根据权利要求1所述的牵引电池组件,其中,每个翅片包括基部和末端部。
- 4.根据权利要求3所述的牵引电池组件,其中,基部附着到所述一对热板中的一个,并且末端部设置在所述电池单元中的相对应的一个的主表面的边界内。
- 5.根据权利要求3所述的牵引电池组件,其中,基部的截面面积比末端部的截面面积大。
- 6.根据权利要求3所述的牵引电池组件,其中,基部进一步包括柔性部,柔性部允许翅 片相对于所述热板运动。
- 7.根据权利要求1所述的牵引电池组件,所述牵引电池组件还包括至少一个夹子,所述至少一个夹子被构造为将每个翅片的基板固定到所述一对热板中的相对应的一个。
- 8.根据权利要求1所述的牵引电池组件,其中,每个翅片还包括舌部,所述舌部与所述一对热板中的相对应的一个中的槽协作,以将翅片可滑动地固定到所述一对热板中的一个。

牵引电池热管理系统

技术领域

[0001] 本公开涉及用于电动车辆中的电池单元的热管理的热系统。

背景技术

[0002] 诸如电池电动车辆(BEV)、插电式混合动力电动车辆(PHEV)或全混合动力电动车辆(FHEV)的车辆包含诸如高电压电池的电池,以用作车辆的能量源。电池容量和循环寿命可根据电池的操作温度而改变。通常期望在车辆运行的同时或在车辆充电的同时使电池保持在特定温度范围内。

[0003] 具有电池的车辆可包括用于向电池提供温度控制以延长寿命并提高性能的热管理系统。

发明内容

[0004] 在一个实施例中,一种牵引电池组件包括电池单元阵列,电池单元阵列具有堆叠的多个电池单元。一对热板被布置为将电池单元阵列夹在所述一对热板之间并包括多个翅片,所述多个翅片仅从所述一对热板中的一个向外延伸到电池单元阵列中。所述多个翅片与所述多个电池单元交替布置,以冷却或加热所述多个电池单元。

[0005] 在另一实施例中,一种牵引电池组件包括电池单元阵列,电池单元阵列具有堆叠的多个电池单元。每个电池单元具有一对相对的主表面。热板与每个电池单元的副表面相邻地设置,并包括从热板延伸且终止于自由端的多个翅片。每个翅片设置在相邻的两个电池单元的主表面之间。

[0006] 根据本发明,提供了一种牵引电池组件,牵引电池组件包括:电池单元阵列,包括堆叠的多个电池单元,每个电池单元具有一对相对的主表面;热板,与每个电池单元的副表面相邻地设置,并包括从热板延伸且终止于自由端的多个翅片,其中,每个翅片设置在相邻的两个电池单元的主表面之间。

[0007] 根据本发明的一个实施例,每个翅片还包括:相对的接触表面,被构造为紧靠着主表面安放;相对的侧表面,使接触表面互相连接,其中,相对的侧表面呈锥形,使得相对的接触表面在自由端处比在固定端处彼此更加靠近。

[0008] 根据本发明的一个实施例,每个翅片还包括柔性部,柔性部邻近固定端,并被构造为允许翅片相对于热板改变位置。

[0009] 根据本发明的一个实施例,所述牵引电池组件还包括至少一个夹子,所述至少一个夹子被构造为将每个翅片的基板固定到热板。

[0010] 根据本发明的一个实施例,每个翅片还包括舌部,舌部与热板中的槽协作,以将翅片可滑动地固定到热板。

[0011] 根据本发明的一个实施例,每个翅片还包括基板,基板经由至少一个"C"型的翅片夹子固定到相对应的热板的内侧部,翅片夹子设置在相对应的热板的长度方向的边缘周围,并被布置为使得一对臂将基板与相对应的热板的内侧部夹紧。

[0012] 在又一实施例中,一种车辆包括:车身;电机,设置在车身中;车轮,附着到车身。车轮由电机驱动。牵引电池组件被构造为向电机供应能量。牵引电池组件包括具有堆叠的多个电池单元的电池单元阵列。一对热板被布置为将电池单元阵列夹在所述一对热板之间。所述一对热板中的每个包括多个翅片,所述多个翅片仅从所述一对热板中的一个向外延伸到电池单元阵列中。所述多个翅片与所述多个电池单元交替布置。

[0013] 根据本发明,提供了一种车辆,车辆包括:车身;电机,设置在车身中;车轮,附着到车身并由电机驱动;牵引电池组件,被构造为向电机供应能量,其中,牵引电池组件包括电池单元阵列和一对热板,电池单元阵列具有堆叠的多个电池单元,所述一对热板被布置为将电池单元阵列夹在所述一对热板之间并具有多个翅片,每个翅片仅从所述一对热板中的一个向外延伸到电池单元阵列中并与所述多个电池单元交替布置。

[0014] 根据本发明的一个实施例,每个翅片在固定端处附着到热板中的相对应的一个,并延伸到电池单元阵列中,且终止于自由端。

[0015] 根据本发明的一个实施例,所述多个翅片交替布置,使得自由端设置在所述多个电池单元的主表面的边界内。

[0016] 根据本发明的一个实施例,牵引电池组件还包括夹子,所述夹子可操作为将每个 翅片与所述一对热板中的相对应的一个热板夹紧。

[0017] 根据本发明的一个实施例,所述多个翅片交替布置,使得仅一个翅片交替布置在任意两个相邻的电池单元之间。

附图说明

[0018] 图1示出了典型的插电式混合动力电动车辆的示意图。

[0019] 图2示出了牵引电池组件的透视图。

[0020] 图3示出了牵引电池组件的分解正视图。

[0021] 图4示出了图3中示出的牵引电池组件的正视图。

[0022] 图5示出了另一牵引电池组件的正视图。

[0023] 图6示出了具有柔性翅片的牵引电池组件的透视图。

[0024] 图7示出了在翅片与热板之间具有夹紧连接的牵引电池组件的透视图。

[0025] 图8示出了具有舌部和槽形翅片附着件的牵引电池组件的透视图。

具体实施方式

[0026] 在此描述了本公开的实施例。然而,应理解的是,公开的实施例仅仅是示例并且其它实施例可采用多种和替代的形式。附图不一定按比例绘制;可夸大或最小化一些特征以示出特定部件的细节。因此,在此所公开的具体结构和功能细节不应被解释为限制,而仅作为用于教导本领域技术人员以多种形式使用本发明的代表性基础。如本领域的普通技术人员将理解的,参照任一附图示出和描述的多个特征可与一个或更多个其它附图中示出的特征组合以产生未明确示出或描述的实施例。示出的特征的组合提供用于典型应用的代表性实施例。然而,与本公开的教导一致的特征的多种组合和变型可期望用于特定应用或实施方式。

[0027] 图1示出了典型的插电式混合动力电动车辆 (PHEV) 的示意图。车辆12包括机械地

连接到混合动力传动装置16的一个或更多个电机14。电机14能够作为马达或发电机运转。此外,混合动力传动装置16机械地连接到发动机18。混合动力传动装置16还机械地连接到驱动轴20,驱动轴20机械地连接到车轮22。当发动机18开启或关闭时,电机14能够提供推进和减速能力。电机14还用作发电机,并且能够通过经由再生制动回收能量而提供燃料经济性效益。电机14通过减少发动机18的工作负荷而减少污染物排放并增大燃料经济性。

[0028] 牵引电池或电池包 (battery pack) 24储存可以被电机14使用的能量。牵引电池24通常从牵引电池24中的一个或更多个电池单元阵列 (有时称为电池单元堆) 提供高电压直流 (DC) 输出。电池单元阵列可包括一个或更多个电池单元。牵引电池24通过一个或更多个接触器 (未示出) 电连接到一个或更多个电力电子模块26。所述一个或更多个接触器在断开时使牵引电池24与其它组件隔离,并在闭合时将牵引电池24连接到其它组件。电力电子模块26还电连接到电机14,并且在牵引电池24和电机14之间提供双向传输电能的能力。例如,典型的牵引电池24可提供DC电压,而电机14可能需要三相交流 (AC) 电压来运转。电力电子模块26可将DC电压转换为电机14所需要的三相AC电压。在再生模式下,电力电子模块26可将来自用作发电机的电机14的三相AC电压转换为牵引电池24所需要的DC电压。在此的描述同样适用于纯电动车辆。在纯电动车辆中,混合动力传动装置16可以是连接到电机14的齿轮箱并且不存在发动机18。

[0029] 牵引电池24除了提供用于推进的能量之外,还可以提供用于其它车辆电气系统的能量。典型的系统可包括将牵引电池24的高电压DC输出转换为与其它车辆负载兼容的低电压DC供应的DC/DC转换器模块28。其它高电压负载(例如,压缩机和电加热器)可直接连接到高电压而不使用DC/DC转换器模块28。在典型的车辆中,低电压系统电连接到辅助电池30(例如,12V电池)。

[0030] 电池电控制模块 (BECM) 33可与牵引电池24通信。BECM 33可用作牵引电池24的控制器,并且还可包括管理每个电池单元的温度和荷电状态的电子监控系统。牵引电池24可具有温度传感器31,例如,热敏电阻或其它温度计量器。温度传感器31可与BECM 33通信,以提供关于牵引电池24的温度数据。

[0031] 车辆12可通过外部电源36进行再充电。外部电源36连接到电源插座。外部电源36可电连接到车辆电力供应设备 (EVSE) 38。EVSE 38可提供电路和控制以调节并管理电源36与车辆12之间的电能的传输。外部电源36可向EVSE 38提供DC或AC电功率。EVSE 38可具有用于插入到车辆12的充电端口34中的充电连接器或EVSE连接器40。充电端口34可以是被构造为将电力从EVSE 38传输到车辆12的任何类型的端口。充电端口34可电连接到充电器或车载电力转换模块32。电力转换模块32可以调节从EVSE 38供应的电力,以向牵引电池24提供合适的电压电平和电流电平。电力转换模块32可与EVSE 38配合,以协调至车辆12的电力传递。EVSE连接器40可具有与充电端口34的相应的凹入匹配的插脚。

[0032] 所讨论的多个组件可具有控制并监控组件的运转的一个或更多个相关联的控制器。控制器可经由串行总线(例如,控制器局域网(CAN))或经由离散导体进行通信。

[0033] 电池单元(例如,方形蓄电池单元或包形电池单元)可包括将储存的化学能转换为电能的电化学单元。电池单元可包括壳体、正极(阴极)和负极(阳极)。电解质可允许离子在放电期间于阳极与阴极之间运动,然后在再充电期间返回。端子可允许电流从电池单元流出以被车辆使用。当多个电池单元按照阵列布置时,每个电池单元的端子可与彼此相邻的

相对的端子(正的和负的)对齐,汇流条可辅助促进多个电池单元之间串联连接。电池单元还可并联布置,从而相同的端子(正的和正的或者负的和负的)彼此相邻。例如,两个电池单元可被布置为正极端子彼此相邻,紧挨着的两个电池单元可被布置为负极端子彼此相邻。在该示例中,汇流条可接触所有的四个电池单元的端子。

[0034] 参照图2、图3和图4,示意图示出了概念化的牵引电池组件50。牵引电池组件50包括电池单元阵列52。电池单元阵列52包括堆叠的多个电池单元54。支架55可用于固定电池单元54。每个电池单元54具有一对相对的主表面56、58,主表面56、58通过副表面60互相连接。主表面56、58大体上可比副表面60大。然而,不同的电池单元形状预期用于牵引电池组件50。例如,电池单元可以是包形电池单元或者可以是方形蓄电池单元。每个电池单元54包括从一个或更多个副表面60向外延伸的至少一个端子62。端子62(在一个以上的情况下)可位于相对的副表面60上或者可位于相同的副表面60上。端子62通过汇流条(未示出)互相连接以使电池单元54按照串联或并联的方式电连接。

[0035] 牵引电池组件50还包括第一热板64。第一热板64具有外侧部66和内侧部68。外侧部66和内侧部68通过侧壁70互相连接以形成壳体72。

[0036] 壳体72的内部是用于使流体介质通过热板循环以向电池单元54传递热或从电池单元54传递热的内部通道。流体介质可加热或冷却电池单元54。内部通道与流体介质循环系统(未示出)连接。循环系统使得电池单元与热板之间进行热交换以及使得冷却介质(流体介质)再循环。流体介质可以是任何的导热流体,例如,乙二醇混合物或制冷剂。

[0037] 第一热板64包括多个第一翅片74。每个第一翅片74具有基部76和末端部80。每个第一翅片74在连接到位于基部76的近端 (proximal end) 或固定端78处连接到内侧部68。第一翅片可通过多种方法连接,所述多种方法包括钎焊、夹紧或舌部与槽连接。每个第一翅片74被布置为使得末端部80从内侧部68向外突出到电池单元阵列52中。每个第一翅片74包括第一接触表面84和与第一接触表面84相对的第二接触表面86。接触表面84、86是接触电池单元54的表面。接触表面84、86大体上可比不接触电池单元54的副表面或侧表面88大。每个第一翅片74交替布置在相邻的电池单元54之间,以使接触表面84、86分别与电池单元54的主表面58、56接触。

[0038] 每个第一翅片74可具有使得第一翅片74仅横跨电池单元54的主表面56、58的一部分延伸的尺寸。因此,末端部80的远端(distal end)或自由端82可被设置在主表面56、58的边界内。可选地,第一翅片74可横跨主表面56、58的长度延伸。

[0039] 第一翅片74可以是实心的翅片。第一翅片74可由任何的导热材料形成。可能有利的是材料的导热率至少为100瓦/(米×摄氏度)(W/(m×℃))。示例性的材料包括铝、铜、导热塑料或镁。第一翅片74可以是锥形的(如图3和图4所示)或者可以是形状一致的(如图5所示)。锥形的翅片可通过提供更紧凑的电池单元阵列而提供更好的封装。锥形的翅片还有助于应对电池单元和翅片尺寸的变化,以提供较好的配合并减少堆叠问题。因为锥形的翅片在基部处比在末端部处厚,并且基部是出现最大热传导的位置,所以锥形的翅片具有增强的热传导性。锥形的第一翅片74具有楔形的副表面88。接触表面84、86是形状一致的且平坦的,并具有大致矩形的表面。副表面88在基部76的近端78处是最厚的,并且厚度逐渐变小而在末端部80的远端82处是最薄的。例如,副表面88在近端78处的宽度可能是1.0毫米(mm),并且在远端82处的宽度可能是0.4mm。所述逐渐变小大体上是线性的,以提供相对平坦的接

触表面84、86。电池单元54被布置为绕从副表面88突出的轴线旋转,使得电池单元的主表面56、58紧靠着接触表面86、84安放。

[0040] 牵引电池组件50还包括第二热板90。第二热板90具有外侧部92和内侧部94。外侧部92和内侧部94通过侧壁96互相连接以形成壳体98。第一热板64和第二热板90设置在电池单元阵列52的相对侧上,并被布置为将电池单元阵列夹在第一热板64与第二热板90之间。壳体98的内部是用于使流体介质通过热板循环以向电池单元54传递热或从电池单元54传递热的内部通道。流体介质可加热或冷却电池单元54。内部通道与流体介质循环系统(未示出)连接。循环系统使得电池单元与热板之间进行热交换以及使得冷却介质(流体介质)再循环。流体介质可以是任何的导热流体,例如,乙二醇混合物或制冷剂。

[0041] 第二热板90包括多个第二翅片100。每个第二翅片100具有基部156和末端部160。每个第二翅片100在近端或固定端104处连接到内侧部94。第二翅片100可通过如上所述的多种方法连接到第二热板90。每个第二翅片100被布置为使得远端或自由端108从内侧部94向外突出到电池单元阵列52中。每个第二翅片100包括第一接触表面110和与第一接触表面110相对的第二接触表面112。接触表面110、112是接触电池单元54的表面。接触表面110、112大体上可比副表面或侧表面114大。每个第二翅片100交替布置在相邻的电池单元54之间,以使接触表面110、112分别与电池单元54的主表面58、56接触。第一翅片74相对于第二翅片100设置在不同的相邻的电池单元对之间。

[0042] 第一翅片74和第二翅片100被布置为沿着电池单元阵列的长度交替布置。图2、图3 和图4示出第二翅片100、然后是电池单元54再然后是第一翅片74的布置。这种顺序沿着电池单元阵列52的长度重复。然而,本公开考虑不同的电池单元和翅片顺序,例如,第一翅片、电池单元、电池单元、第二翅片。

[0043] 每个第二翅片100具有使得第二翅片100仅横跨电池单元54的主表面56、58的一部分延伸的尺寸。因此,远端108设置在主表面56、58的边界内。第一翅片74和第二翅片100仅与其相对应的热板接触。可选地,第二翅片100可横跨主表面56、58的长度延伸。

[0044] 第二翅片100可以是实心翅片。第二翅片100可以由任何的导热材料(例如,铝、铜、导热塑料或镁)形成。第二翅片100也可以是锥形的。锥形的第二翅片100具有楔形的副表面114。接触表面110、112是形状一致的且平坦的,以具有大致矩形的表面。副表面114在基部156的近端104处是最厚的,并且厚度逐渐变小而在末端部160的远端108处是最薄的。例如,副表面114在近端104处的宽度可能是1.0毫米(mm),在远端108处的宽度可能是0.4mm。所述逐渐变小大体上是线性的,以提供平坦的接触表面110、112。电池单元54被布置为绕从副表面114突出的轴线旋转,使得电池单元的主表面56、58紧靠着接触表面112、110安放。

[0045] 可选择地,可在电池单元与热翅片之间应用热界面材料(未示出)的薄板。热界面材料的薄板可通过填充(例如)电池单元与热翅片之间的空隙和/或气隙而增强电池单元与热翅片之间的热传递。热界面材料还可在电池单元与电池组件之间提供电气绝缘。

[0046] 参照图5,示意图示出了另一概念化的牵引电池组件130。虽然牵引电池组件130与牵引电池组件50类似,但牵引电池组件130的翅片具有均匀的厚度。牵引电池组件130包括电池单元阵列132。电池单元阵列132包括堆叠的多个电池单元134。支架135可被设置为固定电池单元134。每个电池单元134具有一对相对的主表面136、138,主表面136、138通过副表面140互相连接。主表面136、138大体上可比副表面140大。然而,不同的电池单元形状考

虑用于牵引电池组件130。

[0047] 牵引电池组件130包括第一热板144。第一热板144具有外侧部146和内侧部148。外侧部146和内侧部148通过侧壁150互相连接以形成壳体152。壳体152的内部是用于使流体介质通过第一热板144循环以向电池单元134传递热或从电池单元134传递热的内部通道。流体介质可加热或冷却电池单元134。内部通道与流体介质循环系统(未示出)连接。循环系统使得电池单元与热板之间进行热交换以及使得冷却介质(流体介质)再循环。流体介质可以是任何的导热流体,例如,乙二醇混合物或制冷剂。第一热板144可被设置为紧靠着(against)电池单元的副表面140中的一个。因为通过主表面和副表面传递热,所以这种布置提供另外的热传递。

[0048] 第一热板144包括多个第一翅片154。与图2至图4中示出的锥形的翅片不同,每个第一翅片154具有一致的截面面积。每个第一翅片154具有基部156和末端部160。每个第一翅片154在基部156的近端158处连接到内侧部148。每个第一翅片154被布置为使得远端162从内侧部148向外突出到电池单元阵列132中。每个第一翅片154包括第一接触表面164和与第一接触表面164相对的第二接触表面166。接触表面164、166是接触电池单元134的表面。接触表面164、166大体上可比不接触电池单元134的副表面168大。每个第一翅片154交替布置在相邻的电池单元134之间,以使接触表面164、166分别与电池单元134的主表面138、136接触。

[0049] 牵引电池组件130还包括第二热板170。第二热板170具有外侧部172和内侧部174。外侧部172和内侧部174通过侧壁176互相连接以形成壳体178。第一热板144和第二热板170设置在电池单元阵列132的相对侧上,并被布置为将电池单元阵列132夹在第一热板144与第二热板170之间。第二热板170可被设置为紧靠着如上所述的电池单元的副表面140中的一个。

[0050] 第二热板170包括多个第二翅片180。每个第二翅片180具有一致的截面面积。每个第二翅片180具有基部181和末端部183。每个第二翅片180在近端181处连接到内侧部174。每个第二翅片180被布置为使得远端184从内侧部174向外突出到电池单元阵列132中。每个第二翅片180包括第一接触表面186和与第一接触表面186相对的第二接触表面188。接触表面186、188是接触电池单元134的表面。接触表面186、188大体上可比副表面190大。每个第二翅片180交替布置在相邻的电池单元134之间,以使接触表面186、188分别与电池单元134的主表面138、136接触。第二翅片180相对于第一翅片154被设置在不同的相邻电池单元对之间。第一翅片154和第二翅片180被布置为沿着电池单元阵列132的长度交替布置,如之前所描述的。

[0051] 参照图6,示出了牵引电池组件200。虽然牵引电池组件200与牵引电池组件50和130类似,但是特别地示出了翅片具有柔性部。牵引电池组件200包括电池单元阵列202。电池单元阵列202包括堆叠的多个电池单元204。本发明考虑使用任何类型的电池单元。示出了具有一对相对的主表面206、208的包形电池单元204,主表面206、208通过副表面210互相连接。每个电池单元204包括从一个或更多个副表面210向外延伸的端子212。

[0052] 牵引电池组件200包括第一热板214。第一热板214具有外侧部216和内侧部218。外侧部216和内侧部218通过侧壁220互相连接以形成壳体222。壳体222的内部是用于使流体介质通过第一热板214循环以向电池单元204传递热或从电池单元204传递热的内部通道。

流体介质可用于冷却或加热电池单元。可通过使热的流体介质经过第一热板214循环而加热电池单元。热量可通过内燃发动机或其它热源而被提供到流体介质。内部通道224与流体循环系统(未示出)连接。循环系统使得电池单元与热板之间进行热交换以及使得流体介质再循环。流体介质可以是任何的导热流体,例如,乙二醇混合物或制冷剂。

[0053] 第一热板214包括多个第一翅片226。每个第一翅片226具有限定第一翅片226的近端的基板228。基板228附着到第一热板214的内侧部218。本公开考虑所有类型的传统连接,例如,钎焊、夹紧、粘合剂和/或紧固件。每个第一翅片226被布置为使得远端234从内侧部218向外延伸到电池单元阵列202中。每个第一翅片226包括第一接触表面236和与第一接触表面236相对的第二接触表面238。接触表面236、238是接触电池单元204的表面。接触表面236、238大体上可比不接触电池单元204的副表面或侧表面240大。每个第一翅片226交替布置在相邻的电池单元204之间,以使接触表面236、238分别与电池单元204的主表面208、206接触。第一翅片226可以是锥形的或形状一致的(如上所述)。

[0054] 每个第一翅片226包括柔性部242。柔性部242允许每个第一翅片226相对于第一热板214运动。柔性部包括具有第一活动铰链和第二活动铰链的双铰链。第一活动铰链和第二活动铰链被构造为在被施加力时沿着相反的方向运动。这允许第一翅片226相对于第一热板214改变位置,以使由相邻的两个电池单元204施加在第一翅片226上的力平衡。这使电池单元阵列202具有柔性,并有助于第一接触表面236和第二接触表面238紧靠着电池单元204的主表面206和208安放。具有柔性部还可通过允许电池单元阵列中的组件之间的柔性而减少堆叠问题。

[0055] 牵引电池组件200还包括第二热板244。第一热板214和第二热板244设置在电池单元阵列202的相对侧上,并将电池单元阵列夹在第一热板214和第二热板244之间。第二热板244与第一热板214相同,并同样地包括附着到第二热板244的多个第二翅片246。第二翅片246与第一翅片226相同。

[0056] 牵引电池组件200还可包括设置在电池单元阵列202的相对侧上的一对端板248。 张紧条 (tensioning strap) 250使端板248互相连接并向电池单元阵列202提供压紧。这种压紧有助于保持翅片226、246紧靠着电池单元204并有助于将电池单元204保持在一定的位置。

[0057] 参照图7,示出了牵引电池组件260。虽然牵引电池组件260与牵引电池组件50、130和200类似,但是特别地示出了翅片与其相对应的热板之间的夹紧连接。牵引电池组件260包括电池单元阵列262。电池单元阵列262包括堆叠的多个电池单元264。本发明考虑使用任何类型的电池单元。示出了具有一对相对的主表面266、268的包形电池单元264,主表面206、208通过副表面270互相连接。每个电池单元264包括从一个或更多个副表面270向外延伸的端子272。

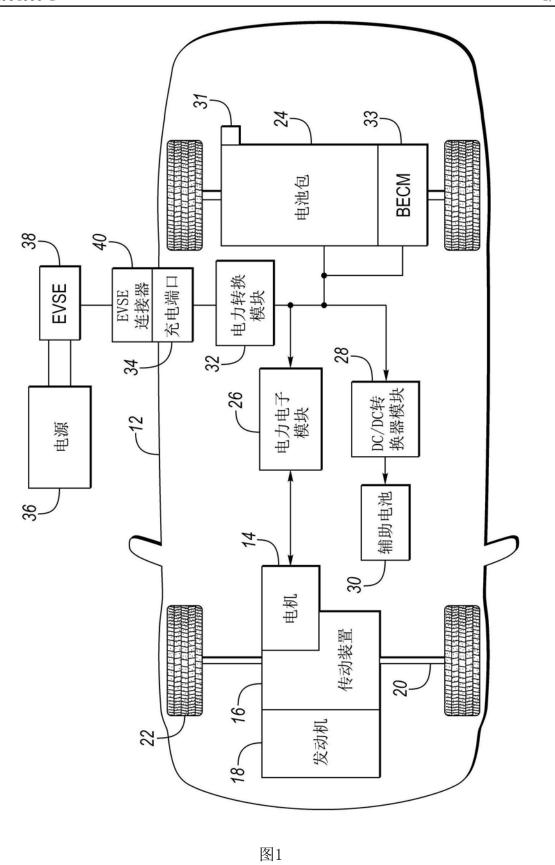
[0058] 牵引电池组件260包括第一热板274。第一热板274具有外侧部276和内侧部278。外侧部276和内侧部278通过侧壁280互相连接以形成壳体282。壳体282的内部是内部通道284。第一热板274包括多个第一翅片286。每个第一翅片286被布置为使得远端294从内侧部278向外延伸到电池单元阵列262中。每个第一翅片286包括第一接触表面296和与第一接触表面296相对的第二接触表面298。每个第一翅片286具有限定第一翅片286的近端290的基板288。每个基板288包括一对相对的突起292,突起292从第一翅片286沿着与第一翅片286

的副表面垂直的方向向外延伸。

[0059] 每个第一翅片286经由夹子302固定到第一热板274。夹子302可以是被构造为在突起292与第一热板274之间施加压紧力的任何机构。夹子可以是"C"型的翅片夹子302,该翅片夹子302被布置为将每个第一翅片286与第一热板274夹紧。翅片夹子302可被设置在第一热板274的一侧或两侧上。翅片夹子302包括协作以限定通道308的第一臂304和第二臂306。突起292和热板的长度方向的边缘部310被容纳在通道308内。第一臂304和第二臂306协作以夹紧基板288与第一热板274。每个第一翅片286交替布置在相邻的电池单元264之间,以使接触表面296、298分别与电池单元264的主表面268、266接触。第一翅片286可以是锥形的或形状一致的。

[0060] 牵引电池组件260还包括第二热板312。第一热板274和第二热板312设置在电池单元阵列262的相对侧上,并将电池单元阵列夹在第一热板274与第二热板312之间。第二热板312与第一热板274相同,并同样地包括多个第二翅片314。第二翅片314与第一翅片286相同,并同样地经由夹紧机构316附着到第二热板312。

[0061] 参照图8,示出了牵引电池组件320。虽然牵引电池组件320与牵引电池组件50、130、200和260类似,但是特别地示出了翅片与其相对应的热板之间的舌部与槽连接。牵引电池组件320包括电池单元阵列322。电池单元阵列322包括堆叠的多个电池单元324。本发明考虑使用任何类型的电池单元。示出了具有一对相对的主表面326、328的包形电池单元324,主表面326、328通过副表面330互相连接。每个电池单元324包括从一个或更多个副表面330向外延伸的端子332。


[0062] 牵引电池组件320包括第一热板334。第一热板334具有外侧部336和内侧部338。外侧部336和内侧部338通过侧壁340互相连接以形成壳体342。壳体342的内部是内部通道344。第一热板334包括多个第一翅片346。每个第一翅片346被布置为使得远端从内侧部338向外延伸到电池单元阵列322中。每个第一翅片346包括第一接触表面352和与第一接触表面352相对的第二接触表面354。接触表面352、354是接触电池单元324的表面。

[0063] 每个第一翅片346具有基板358,基板358包括至少一个舌部360。所述至少一个舌部360被容纳在相对应的槽362中,槽362被设置在第一热板334中。舌部与槽的布置将第一翅片横向地定位到电池单元阵列322,并允许轴向(即,第一热板334的长度方向)运动,这在装配期间可能是有利的。第一翅片346可使用端板、夹子364或其它支架轴向地固定。每个第一翅片346交替布置在相邻的电池单元324之间,以使接触表面352、354分别与电池单元324的主表面328、326接触。第一翅片346可以是锥形的或形状一致的。

[0064] 牵引电池组件320还包括第二热板(未示出)。第一热板334和第二热板设置在电池单元阵列322的相对侧上,并将电池单元阵列夹在第一热板334与第二热板之间。第二热板与第一热板334相同,并且同样地包括与第一翅片346相同的多个第二翅片368。

[0065] 虽然上面描述了示例性实施例,但是并不意味着这些实施例描述了权利要求所包含的所有可能的形式。在说明书中使用的词语是描述性的词语而不是限制性的词语,并且应该理解的是,在不脱离本公开的精神和范围的情况下,可以进行各种改变。如前面所描述的,可以对各个实施例的特征进行组合以形成本发明的可能未被明确描述或说明的进一步的实施例。虽然关于一个或更多个期望的特性,各个实施例已经被描述为提供优点或优于其它实施例或现有技术的实施方式,但是本领域的普通技术人员意识到,根据具体应用和

实施方式,可以折衷一个或更多个特点或特性,以实现期望的整体系统属性。这些属性可包括但不限于成本、强度、耐用性、生命周期成本、市场性、外观、包装、尺寸、维修保养方便性、重量、可制造性、易组装性等。这样,关于一个或更多个特性,被描述为不如其它实施例或现有技术的实施方式合意的实施例不在本公开的范围之外,并且可以期望用于特定的应用。



图2

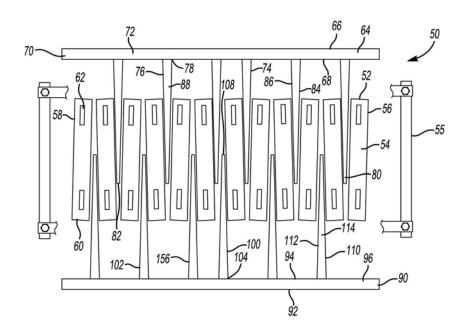


图3

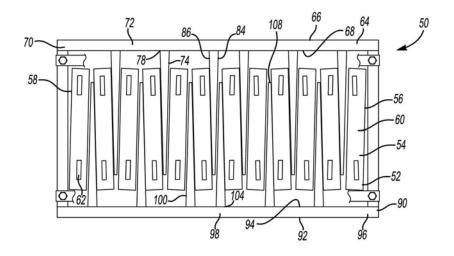


图4

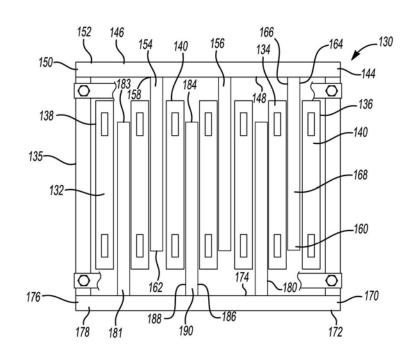
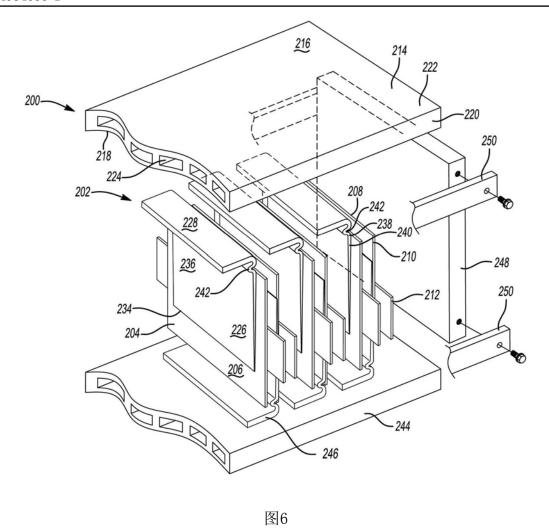



图5

15

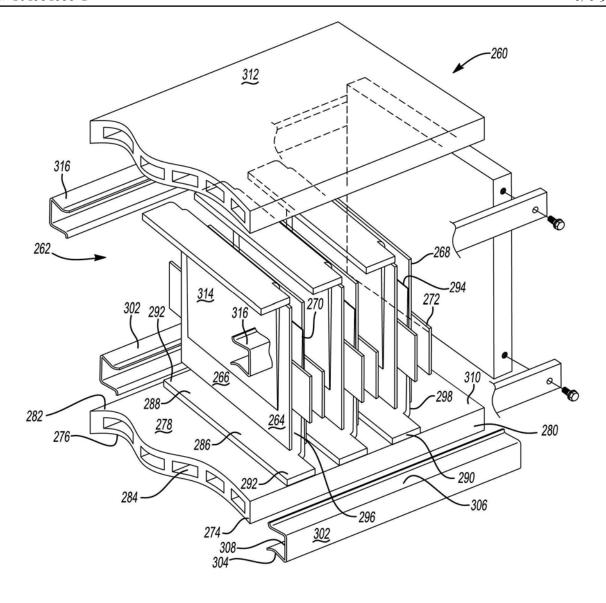
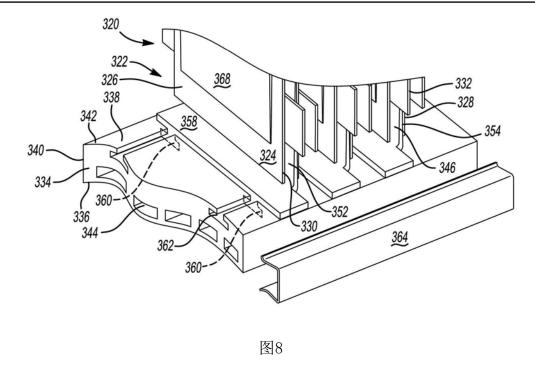



图7

